
Comparing the Defect Reduction Benefits of
Code Inspection and Test-Driven Development

Jerod W. Wilkerson, Jay F. Nunamaker Jr., and Rick Mercer

Abstract—This study is a quasi experiment comparing the software defect rates and implementation costs of two methods of software

defect reduction: code inspection and test-driven development. We divided participants, consisting of junior and senior computer

science students at a large Southwestern university, into four groups using a two-by-two, between-subjects, factorial design and asked

them to complete the same programming assignment using either test-driven development, code inspection, both, or neither. We

compared resulting defect counts and implementation costs across groups. We found that code inspection is more effective than test-

driven development at reducing defects, but that code inspection is also more expensive. We also found that test-driven development

was no more effective at reducing defects than traditional programming methods.

Index Terms—Agile programming, code inspections and walk throughs, reliability, test-driven development, testing strategies,

empirical study.

Ç

1 INTRODUCTION

SOFTWARE development organizations face the difficult
problem of producing high-quality, low-defect software

on time and on-budget. A US government study [1]
estimated that software defects are costing the US economy
approximately $59.5 billion per year. Several high-profile
software failures have helped to focus attention on this
problem, including the failure of the Los Angeles airport’s
air traffic control system in 2004, the Northeast power
blackout in 2003 (with an estimated cost of $6-$10 billion),
and two failed NASA Mars missions in 1999 and 2000 (with
a combined cost of $320 million).

Various approaches to addressing this epidemic of

budget and schedule overruns and software defects have

been proposed in the academic literature and applied in

software development practice. Two of these approaches

are software inspection and test-driven development

(TDD). Both have advantages and disadvantages, and both

are capable of reducing software defects [2], [3], [4], [5].
Software inspection has been the focus of more than 400

academic research papers since its introduction by Fagan in

1976 [6]. Software inspection is a formal method of

inspecting software artifacts to identify defects. This

method has been in use for more than 30 years and has

been found to be very effective at reducing software defects.

Fagan reported software defect reduction rates between 66
and 82 percent [6].

While any software development artifact may be
inspected, most of the software inspection literature deals
with the inspection of program code. In this study, we limit
inspections to program code, and we refer to these
inspections as code inspections.

TDD is a relatively new software development practice
in which unit tests are written before program code. New
tests are written before features are added or changed, and
new features or changes are generally considered complete
only when the new tests and any previously written tests
succeed. TDD usually involves the use of unit-testing
frameworks (such as JUnit1 for Java development) to
support the development of automated unit tests and to
allow tests to be executed frequently as new features or
modifications are introduced. Although results have been
mixed, some research has shown that TDD can reduce
software defects by between 18 and 50 percent [2], [3], with
one study showing a reduction of up to 91 percent [7], with
the added benefit of eliminating defects at an earlier stage of
development than code inspection.

TDD is normally described as a method of software
design, and as such, has benefits that go beyond testing
and defect reduction. However, in this study we limit our
analysis to a comparison of the defect reduction benefits
of the methods and do not consider other benefits of
either approach.

Existing research does not sufficiently assess whether
TDD is a useful supplement or a viable alternative to code
inspection for purposes of reducing software defects.
Previous research has compared the defect reduction benefits
of code inspection and software testing—much of which is
summarized by Runeson et al. [8]. However, the current high
adoption rates of TDD indicate the timeliness and value of
specific comparisons of code inspection and TDD. The focus

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012 547

. J.W. Wilkerson is with the Sam and Irene Black School of Business,
Pennsylvania State University, Erie, 281 Burke Center, 5101 Jordan Road,
Erie, PA 16563. E-mail: jww16@psu.edu.

. J.F. Nunamaker Jr. is with the Department of Management Information
Systems, University of Arizona, 1130 E. Helen St., Tucson, AZ 85721.
E-mail: jnunamaker@CMI.arizona.edu.

. R. Mercer is with the Department of Computer Science, University of
Arizona, 1040 E. 4th St., Tucson, AZ 85721.
E-mail: mercer@cs.arizona.edu.

Manuscript received 11 Jan. 2010; revised 2 Aug. 2010; accepted 21 Dec.
2010; published online 14 Apr. 2011.
Recommended for acceptance by A.A. Porter.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2010-01-0011.
Digital Object Identifier no. 10.1109/TSE.2011.46. 1. http://www.junit.org.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

of this study is a comparison of the defect rates and relative
costs of these two methods of software defect reduction. In
the study, we seek to answer the following two main
questions:

1. Which of these two methods is most effective at reducing
software defects?

2. What are the relative costs of these software defect
reduction methods?

The software inspection literature typically uses the term
“defect” to mean “fault.” This literature contains a well-
established practice of categorizing defects as either
“major” or “minor” [9], [10]. In this paper, we compare
the effectiveness of code inspection and TDD in removing
“major defects.”

The remainder of this paper is organized as follows: The
next section discusses the relevant research related to this
study. Section 3 describes the purpose and research ques-
tions. Section 4 describes the experiment and the procedures
followed. Sections 5 and 6 describe the results and implica-
tions of the findings, and Section 7 concludes with a
discussion of the study’s contributions and limitations.

2 RELATED RESEARCH

Since software inspection and TDD have not previously
been compared, we have divided the discussion of related
work into two main sections: Software Inspection and Test-
Driven Development. These sections provide a discussion
of the prior research on each method that is relevant to the
current study’s comparison of methods. The Software
Inspection section also includes a summary of findings
from prior comparisons of code inspection and traditional
testing methods.

2.1 Software Inspection

Fagan introduced the concept of formal software inspec-
tion in 1976 while working at IBM. His original techniques
are still in widespread use and are commonly called
“Fagan Inspections.” Fagan Inspections can be used to
inspect the software artifacts produced by all phases of a
software development project. Inspection teams normally
consist of three to five participants, including a moderator,
the author of the artifact to be inspected, and one to three
inspectors. The moderator may also participate in the
inspection of the artifact. Fagan Inspections consist of the

following phases: Overview (may be omitted for code
inspections), Preparation, Inspection, Rework, and Follow-
Up, as shown in Fig. 1. The gray arrow between Follow-Up
and Inspection indicates that a reinspection is optional—at
the moderator’s discretion.

In the Overview phase, the author provides an overview
of the area of the system being addressed by the inspection,
followed by a detailed explanation of the artifact(s) to be
inspected. Copies of the artifact(s) to be inspected and
copies of other materials (such as requirements documents
and design specifications) are distributed to inspection
participants. During the Preparation phase, participants
independently study the materials received during the
Overview phase in preparation for the inspection meeting.
During the Inspection phase, a reader explains the artifact
being inspected, covering each piece of logic and every
branch of code at least once. During the reading process,
inspectors identify errors, which the moderator records. The
author corrects the errors during the Rework phase and all
corrections are verified during the Follow-Up phase. The
Follow-Up phase may be either a reinspection of the artifact
or a verification performed only by the moderator.

Fagan [6], reported defect yield rates between 66 and
82 percent, where the total number of defects in the product
prior to inspection (t) is

t ¼ iþ aþ u; ð1Þ

where “i” is the number of defects found by inspection, “a”
is the number of defects found during acceptance testing,
and “u” is the number of defects found during the first six
months of use of the product. The defect detection (yield)
rate (y) is

y ¼ i=t � 100: ð2Þ

Two papers, [11], [12], summarize much of the existing
software inspection literature, including variations in how
software inspections are performed. Software inspection
variations differ mainly in the reading technique used in the
Inspection phase of the review. Reading techniques include
Ad Hoc Reading [13], Checklist-Based Reading [6], [9], [10],
[14], Reading by Stepwise Refinement [15], Usage-Based
Reading [16], [17], [18], and Scenario (or Perspective)-Based
Reading [19], [20], [21], [22]. Several comparison studies of
reading techniques have also been performed [23], [24], [25],
[26], [27].

548 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

Fig. 1. Software inspection process.

Porter and Votta [25] and Porter et al. [26] performed
experiments comparing Ad Hoc Reading, Checklist-Based
Reading, and Scenario-Based Reading for software require-
ments inspections using both student and professional
inspectors. Inspectors using Ad Hoc Reading were not
given specific guidelines to direct their search for defects.
Inspectors using Checklist-Based Reading were given a
checklist to guide their search for defects. Each Scenario-
Based Reading inspector was given one of the following
primary responsibilities to fulfill during the search for
defects: 1) search for data type inconsistencies, 2) search for
incorrect functionality, and 3) search for ambiguities or
missing functionality. Porter et al. found that Scenario-
Based Reading was the most effective reading method,
producing improvements over both Ad Hoc Reading and
Checklist-Based Reading from 21 to 38 percent for profes-
sional inspectors and from 35 to 51 percent for student
inspectors. They attributed this improvement to efficiency
gains resulting from a reduction in overlap between the
types of defects for which each inspector was searching.

Another important advance in the state of software
inspections was the application of group support systems
(GSS) to the inspection process. Years of prior research
have shown that the use of GSS can improve meeting
efficiency. Efficiency improvements have been attributed to
reductions in dominance of the meeting by one or a few
participants, reductions in distractions associated with
traditional meetings, improved group memory, and the
ability to support distributed collaborative work [28], [29].
Johnson [30] notes that the application of GSS to software
inspection can overcome obstacles encountered with
paper-based inspections, thereby improving the efficiency
of the inspection process. Van Genuchten et al. [31] also
found that the benefits of GSS can be realized in code
inspection meetings. Other studies [32], [33], [34], [35], [36]
have also found improvements in the software inspection
process as a result of GSS.

Several studies have compared code inspection with
more traditional forms of testing. Runeson et al. [8]
summarize nine studies comparing the effectiveness and
efficiency of code inspection and software testing in finding
code defects. They concluded that “the data doesn’t support
a scientific conclusion as to which technique is superior, but
from a practical perspective it seems that testing is more
effective than code inspections.” Boehm [37] analyzed four

studies comparing code inspection and unit testing, and
found that code inspection is more effective and efficient at
identifying up to 80 percent of code defects.

2.2 Test-Driven Development

TDD is a software development practice that involves the
writing of automated unit tests before program code. The
subsequent coding is deemed complete only when the new
tests and all previously written tests succeed. TDD, as
defined by Beck [38], consists of five steps. These steps,
which are illustrated in Fig. 2, are completed iteratively
until the software is complete. Successful execution of all
unit tests is verified after both the “Write Code” and
“Refactor” steps.

Prior studies have evaluated the effectiveness of TDD,
and have obtained varied defect reduction results. Müller
and Hagner [39] compared test-first programming to
traditional programming in an experiment involving 19 uni-
versity students. The researchers concluded that test-first
programming did not increase program reliability or
accelerate the development effort.

In a pair of studies by Maximilien and Williams [3] and
George and Williams [2], the researchers found that TDD
resulted in higher code quality when compared to
traditional programming. Maximilien and Williams per-
formed a case study at IBM on a software development
team that developed a Java-based point-of-sale system. The
team adopted TDD at the beginning of their project and
produced 50 percent fewer defects than a more experi-
enced IBM team that had previously developed a similar
system using traditional development methods. Although
the case study lacked the experimental control necessary to
establish a causal relationship, the development team
attributed their success to the use of the TDD approach.
In another set of four case studies (one performed at IBM
and three at Microsoft), the use of TDD resulted in between
39 and 91 percent fewer defects [7].

George and Williams [2] conducted a set of controlled
experiments with 24 professional pair programmers. One
group of pair programmers used a TDD approach while the
other group used a traditional waterfall approach. The
researchers found that the TDD group passed 18 percent
more black-box tests and spent 16 percent more time
developing the code than the traditional group. They also
reported that the pairs who used a traditional waterfall

WILKERSON ET AL.: COMPARING THE DEFECT REDUCTION BENEFITS OF CODE INSPECTION AND TEST-DRIVEN DEVELOPMENT 549

Fig. 2. Test-driven development process.

approach often did not write the required automated test
cases at the end of the development cycle.

Erdogmus et al. [40] conducted an experiment designed
to test a theory postulated in previous studies [2], [3]: that
the cause of higher quality software associated with TDD is
an increased number of automated unit tests written by
programmers using TDD. They found that TDD does result
in more tests, and that more tests result in higher
productivity, but not higher quality.

In summary, some prior research has found TDD to be
an effective defect reduction method [2], [3], [7] and some
has not [39], [40]. Section 6 contains a potential explanation
for this variability.

2.3 Summary

Code inspection is almost exclusively a software defect
reduction method, whereas TDD has several purported
benefits—only one of which is software defect reduction.
We are primarily interested in comparing software defect
reduction methods, so our focus is on the software defect
reduction capabilities of the two methods and how these
capabilities compare on defect reduction effectiveness and
cost. One of the main differences between code inspection
and TDD is the point in the software development process
in which defects are identified and eliminated. Code
inspection identifies defects at the end of a development
cycle, allowing programmers to fix defects previously
introduced, whereas TDD identifies and removes defects
during the development process at the point in the process
where the defects are introduced. Earlier elimination of
defects is a benefit of TDD that can have significant cost
savings [37]. It should be noted, however, that software
inspection can be performed on analysis and design
documents in addition to code, thereby moving the benefits
of inspection to an earlier stage of software development.

3 PURPOSE AND RESEARCH QUESTIONS

The purpose of this study is to compare the defect rates and
relative costs of code inspection and TDD. Specifically, we
seek to answer the following research questions:

1. Which software defect reduction method is most
effective at reducing software defects?

2. Are there interaction effects associated with the
combined use of these methods?

3. What are the relative costs of these software defect
reduction methods?

The previously cited literature indicates that both
methods can be effective at reducing software defects.
However, TDD is a relatively new method, whereas code
inspection has been refined through more than 30 years of
research. Prior research has clearly defined the key factors
involved with successfully implementing code inspection,
such as optimal software review rates [9], [10], [14], [41] and
inspector training requirements [10], whereas TDD is not as
clearly defined due to its lack of maturity.

Currently, the defect reduction results for TDD have
been mixed, with most reported reductions being below
50 percent [3]. Defect reduction from code inspection has
consistently been reported at above 50 percent since Fagan’s

introduction of the method in 1976. This leads to a
hypothesis that code inspection is more effective than
TDD at reducing defects.

H1. Code inspection is more effective than TDD at reducing
software defects.

Code inspection and TDD have fundamental differences
that likely result in each method finding defects that the
other method misses. With TDD, the same programmer who
writes the unit tests also writes the code. Therefore, any
misconceptions held by the programmer about the require-
ments of the system will result in the programmer writing
incorrect tests and incorrect code to pass the tests. These
“requirement misconception” defects are less likely in code
that undergoes inspection because it is unlikely that all of
the inspectors will have the same misconceptions about the
requirements that the programmer has—especially if the
requirements document has also been inspected for defects.

Although susceptible to requirement misconception
defects, TDD encourages the writing of a large number of
unit tests—some of which may test conditions inspectors
overlook during the inspection process. This effect would
likely be more noticeable when using inexperienced
inspectors, but could occur with any inspectors. These
differences between the methods indicate that each method
will find defects that the other method misses. This leads to
a hypothesis that the combined use of the methods is more
effective than either method alone.

H2. The combined use of code inspection and TDD is more
effective than either method alone.

The existing literature does not support a hypothesis as
to which method has the lowest implementation cost.
However, the nature of the cost differs between the two
methods. The cost from TDD results from programmers
spending additional time writing tests. The cost from code
inspection results from both the time spent by the
inspectors and the time spent by programmers correcting
identified defects. These differences lead to a hypothesis
that the methods differ in implementation cost—measured
as the cost of developing software using that method of
defect reduction.

H3. Code inspection and TDD differ in implementation cost.

4 METHOD

We evaluated the research questions in a quasi experiment
using a two-by-two, between-subjects, factorial design.
Participants in each research group independently com-
pleted a programming assignment according to the same
specification using either inspection, TDD, both (Inspec-
tion+TDD), or neither. The two independent variables
(factors) in the study are whether Inspection was used and
whether TDD was used as part of the development method.
The Inspection and Inspection+TDD groups constituted the
Inspection factor and the TDD and Inspection+TDD groups
constituted the TDD factor. The group that used neither TDD
nor Inspection was the control group.

The programming assignment involved the creation of
part of a spam filter using the Java programming language.

550 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

We gave the participants detailed specifications and some

prewritten code and instructed them to use the Java API to

read-in an XML configuration file containing the rules,

allowed-list, and blocked-list for a spam filter. This

information was to be represented with a set of Java objects.

We required participants to maintain a specific API in the

code to enable the use of prewritten JUnit tests as part of the

defect counting process described in Section 4.3.1.
The final projects submitted by the participants con-

tained an average of 554 noncommentary source statements

(NCSS), including 261 NCSS that we provided to partici-

pants in a starter project. Table 1 provides descriptive

statistics of the number of NCSS submitted, summarized by

research group.

4.1 Participants

Participants were undergraduate (mostly junior or senior)

computer science students from an object-oriented pro-

gramming and design course at a large Southwestern US

university. We invited all students from the class to

participate in the study. Participation included taking a

pretest to assess their Java programming and object-oriented

design knowledge and permitting the use of data generated

from their completion of a class assignment. All 58 students

in the class agreed to participate but data were only collected

for the 40 with the highest pretest scores. We entered the

students who agreed to participate into a $100 cash drawing,

but we did not compensate them in any other way. Because

the programming assignment was required of all students in

the class (whether they agreed to be research participants or

not) and the assignment was a graded part of the class we

recruited them from, we believe that they had a reasonably
high motivation to perform well on the assignment.

Each of the 40 participants was objectively assigned to
one of the four research groups—with 10 participants
assigned to each group—by a genetic algorithm that
attempted to minimize the difference between the groups
in both pretest average scores and standard deviation. The
algorithm was very successful in producing equalized
groups without researcher intervention in the grouping;
however, several participants had to be excluded from the
study for reasons described in Table 2. Table 3 shows the
effect of these exclusions on group size. These exclusions
resulted in unequal research groups, so we used pretest
score as a control variable during data analysis.

4.2 Experimental Procedures

Before the start of the experiment, all participants received
training on TDD and the use of JUnit through in-class
lectures, a reading assignment, and a graded programming
assignment. At the start of the experiment, we gave
participants a detailed specification and instructed them
to individually write Java code to satisfy the specification
requirements. We gave participants two weeks to complete
the project in two separate one-week iterations.

To maintain experimental control during this out-of-lab,
multiple-week experiment, we analyzed the resulting code
using MOSS2—an algorithm for detecting software plagiar-
ism. We excluded two participants for suspected plagiar-
ism, as shown in Table 2.

4.2.1 Software Inspection

All participants in the Inspection and Inspection+TDD
groups had their code inspected by a single team of three
inspectors. We then gave these participants one week to
resolve the major defects found by inspection. We refer to
these inspections as “Method Inspections.” Inspectors were
students but were not participants in the study. Inspections
were performed according to Fagan’s method [6], [9] with
three exceptions. First, we did not invite authors to
participate in the inspection process. The inspection process
took two weeks to complete because of the large number of
inspections performed, and inviting authors to the inspec-
tion meetings would have given authors whose code was
inspected early in the process extra time to correct their
defects. This would have been unfair to the students whose
code was inspected later since the assignment was graded
and included as part of their course grade. Inviting authors

WILKERSON ET AL.: COMPARING THE DEFECT REDUCTION BENEFITS OF CODE INSPECTION AND TEST-DRIVEN DEVELOPMENT 551

TABLE 1
Descriptive Statistics of

Noncommentary Source Statements Submitted by Group

TABLE 2
Reasons for Participant Exclusion

TABLE 3
Participants Excluded by Group

2. http://theory.stanford.edu/aiken/moss.

to inspection meetings may also have increased the effect of
inspection order on both dependent variables. As a result,
the moderator also assumed the role of the authors in the
inspection meetings.

Second, the inspectors used a collaborative inspection
logging tool for both the inspection preparation and the
meetings. Each inspector logged issues in the collaborative
tool as the issues were found. This allowed the inspectors to
see what had previously been logged and to spend their
preparation time finding issues that had not already been
found by another inspector. Use of the tool also allowed
more time in the inspection meetings to find new issues
rather than using the meeting time to report and log issues
found during Preparation. The collaborative tool also
reduced meeting distractions, allowing inspectors to remain
focused on finding new issues [42].

Third, the inspectors used the Scenario-Based Reading
approach described by Porter et al. [26]. We assigned each
inspector a role of searching for one of the following defect
types: missing functionality, incorrect functionality, or
incorrect Java coding. We instructed the inspectors not to
limit themselves to these roles, but to spend extra effort
finding all of the defects that would fall within their
assigned role.

We instructed the inspector who was assigned to search
for incorrect Java coding to use the Java inspection checklist
created by Fox [43] to guide the search for defects. Although
we also made the checklist available to the other inspectors,
searching for this type of defect was not their primary role.
We annotated the checklist items that were most likely to
uncover major defects with the words “Major” or “Possible
Major” and instructed the inspectors to focus their efforts
on these items in addition to their assigned role.

We gave inspectors 4 hours of training—approximately
1.5 hours on the inspection process and 2.5 hours on XML
processing with Java (the subject matter under inspection).
We instructed the inspectors to spend 1 hour preparing for
each inspection, and we held inspection meetings to within a
few minutes of 1 hour. We limited the number of inspection
meetings to two per day to avoid reduced productivity due
to fatigue, as noted by Fagan [9] and Gilb and Graham [10].
We also controlled the maximum inspection rate, which has
long been known to be a critical factor in inspection
effectiveness [9], [10], [14], [41]. Fagan recommends a
maximum inspection rate of 125 noncommentary source
statements per hour [9], whereas Humphrey recommends a
maximum rate of 300 lines of code (LOC) per hour [14]. The
mean inspection rate in this study was 180 NCSS/hour with
a maximum rate of 395 NCSS/hour. Although the max-
imum rate was slightly above Humphrey’s recommenda-
tion, this rate seems justified considering that the inspectors
were inspecting multiple copies of code written to the same
specification and, as a result, became very familiar with the
subject matter of the inspections.

Inspectors categorized the issues they found as being
either “major” or “minor” and we instructed them to focus
their efforts on major issues, as recommended by Gilb and
Graham [10]. After all inspections were completed, we gave
each author an issue report containing all of the issues
logged by the inspectors. We then gave the authors one

week to resolve all major defects and to return the issue
report with each defect categorized by the author into one
of the following categories: Resolved, Ignored, Not a Defect,
or Other. We required authors to write an explanation for
any issue categorized as either “Not a Defect” or “Other.”

4.2.2 Test-Driven Development

Prior to the start of this experiment, all participants were
given classroom instruction on the use of JUnit and TDD.
Formal instruction consisted of one 75-minute classroom
lecture on JUnit and TDD. Participants were also shown in-
class demos during other lectures that demonstrated test-
first programming. All participants (and other students in
the class) completed a one-week programming assignment
prior to the start of the experiment in which they developed
an interactive game using JUnit and TDD and had to submit
both code and JUnit tests for grading.

We instructed participants in the TDD and Inspec-
tion+TDD groups to develop automated JUnit tests and
program code iteratively while completing the program-
ming assignment. We instructed them to write JUnit tests
first when creating new functionality or modifying existing
functionality, and to use the passage of the tests as an
indication that the functionality was complete and correct.
We also instructed participants in the Inspection+TDD
group to use TDD during correction of the defects identified
during inspection.

4.3 Measurement

Most research on defect reduction methods has reported
“yield” as a measure of method effectiveness, where “yield”
is the ratio of the number of defects found by the method to
the total number of defects in the software artifact prior to
inspection [6], [14]. However, “yield” cannot be reliably
calculated for TDD because the TDD method eliminates
defects at the point of introduction into the code, making it
impossible to reliably count the number of defects
eliminated by the method. Therefore, we used the number
of defects remaining after application of the method as a
substitute for “yield.” We used the cost of development of
the software using the assigned method, as a second
dependent variable.

4.3.1 Defects Remaining

We defined the total number of defects remaining as the
summation of the number of major defects found by code
inspection after the application of the defect reduction
method and the number of failed automated acceptance tests
representing unique defects not found by inspection (out of
58 JUnit tests covering all requirements). This is consistent
with the measure used by Fagan [6], with the exception of
the exclusion of the number of defects identified during the
first six months of actual use of the software.

We included code inspection as part of the defect
counting procedure, even though code inspection was one
of the two factors under investigation in the study, because
a careful review of the literature indicates that code
inspection has been the most heavily researched and widely
accepted method of counting defects since Fagan’s intro-
duction of the method in 1976 [6]. To address a potential
bias in favor of code inspection resulting from the use of

552 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

code inspection as both a treatment condition and a defect
counting method, we also report “defects remaining”
results from acceptance testing (excluding counts from
inspection) in a supplemental document, which can be
found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSE.2011.46. The hy-
pothesis testing results were the same in this case—
hypothesis H1 is supported with both the combined
method of defect counting and the “acceptance testing
only” method.

Fig. 3 illustrates our defect counting procedure and how
it relates to the treatment conditions tested in the study. The
four boxes along the left edge of the diagram represent the
four treatment conditions. These are the four software
development methods under investigation in the study. For
both the Inspection group and the Inspection+TDD group, a
code inspection and subsequent rework to resolve the
issues identified during the inspection was performed as
part of the development method. Then each group, whether
code inspection was part of the development method or not,
was subjected to a separate code inspection as part of the
defect counting procedure. We refer to the defect counting
inspections as measurement inspections. A separate inspec-
tion team performed the measurement inspections to
prevent bias in favor of the Inspection and Inspection+TDD
groups. The same method was used for the measurement
inspections as was used for the method inspections, except
that only two inspectors in addition to the moderator were
used due to resource constraints.

We executed the automated JUnit tests after completion
of the measurement inspections and added to the defect
counts, any test failures representing defects not already
found by inspection. We wrote the automated tests before
the start of the experiment and made minor adjustments
and additions before the final test run.

One of the automated tests executed the code against a
sample configuration file that we provided to the partici-
pants at the start of the experiment. The passage of this test,

which we will refer to as the baseline test, indicates that the
code executes correctly against a standard configuration
file. We used the passage of this test to indicate that the
code is “mostly correct.” We wrote all other tests as
modifications of this baseline test to identify specific
defects. If the baseline test failed, we could not assume
that the code was mostly correct, and therefore we could
not rule out the possibility that some unexpected condition
(other than what the tests were intended to check) was
causing failures within the test suite. For example, if the
baseline test failed, it could mean that the configuration file
was not being read into the program correctly. This would
result in almost all of the tests failing because the
configuration file was not properly read and not because
the code contained the defects the tests were intended to
check. As a result, we only considered code to be testable if
it passed the baseline test. We made minor changes to some
projects to make the code testable, and in these cases, we
logged each required change as a defect. Three participants
submitted code that would have required extensive changes
to make it testable according to the aforementioned
definition. We could not be sure that these changes would
not alter the author’s original intent, so we excluded these
participants from the study, as shown in Table 2.

Two adjustments to the resulting defect counts were
necessary to arrive at the final number of defects remaining
in the code. First, the inspection moderator performed an
audit of defects identified by inspection and eliminated
false positives. This would have resulted in an under-
statement of the effect of code inspection if the moderator
inadvertently eliminated any real defects, making it less
likely to find our reported result.

Second, in several cases, authors either ignored or
attempted but did not correct defects that were identified
by the method inspections. In an industrial setting, the
inspection process would have included an iterative
“Follow-Up” phase (see Fig. 1) for the purpose of catching
these uncorrected defects and ensuring that they were

WILKERSON ET AL.: COMPARING THE DEFECT REDUCTION BENEFITS OF CODE INSPECTION AND TEST-DRIVEN DEVELOPMENT 553

Fig. 3. Treatment conditions and defect counting.

corrected before the inspection process completed. How-
ever, due to time and resource constraints, we could not
allow iterative cycles of Follow-Up, Inspection, and Rework,
to ensure that all identified major defects were eventually
corrected.

In a well-functioning inspection process with experienced
inspectors and an experienced inspection moderator, most (if
not all) of these identified defects would be corrected by this
process. In this type of process, the only identified defects
that are likely to be left uncorrected are those for which a fix
was attempted, and the fix appears to the inspector(s)
performing the follow-up inspection to be correct, when in
fact it is not correct. We assume that these cases are rare, and
that we can therefore increase the accuracy of the results by
subtracting any uncorrected defects from the final defect
counts. However, because of uncertainty about how rare
these cases are, we report results for both the adjusted and
unadjusted defect counts. The unadjusted defect counts still
include the elimination of false positives by the moderator.

4.3.2 Cost

We report the total cost of each method in total man hours.
However, we also report man hours separately for
inspectors and programmers in the code inspection case
to allow for the application of these findings where
programmer rates and inspector rates differ.

The total cost for the code inspection method is the sum
of the original development hours spent by the author of
the code, the hours spent by the software inspectors and
moderator (preparation time plus meeting time), and the
hours spent by the author correcting defects identified by
inspection. The total cost for the TDD method is the sum of
the development hours used to write both the automated
tests and the code.

Author hours were self-reported in a spreadsheet that
was submitted with the code. Inspector preparation hours
were also self-reported. The inspection moderator tracked
and recorded inspection meeting time. All hours were
recorded in 15-minute increments.

4.4 Threats to Internal Validity

We considered the possibility that unexpected factors may
have biased the results. We considered the following
potential threats to internal validity:

1. selection bias,
2. mortality bias,
3. maturation bias,
4. order bias, and
5. implementation bias.

Selection bias refers to the possibility that participants in
the study were divided unequally into research groups,
and as a result, the findings are at least partly due to these
differences and not to the effects of the treatment
conditions. Although many differences in the participants
could potentially contribute to a selection bias, Java
programming ability seems to be the most likely cause of
selection bias in this study. We accounted for this
possibility by using a quasi-experimental design with
participants assigned to groups by pretest score using the
aforementioned genetic algorithm.

Mortality bias refers to the possibility that the groups
became unequal after the start of the study as a result of
participants either dropping out or being eliminated. We
experienced a high mortality rate—starting with 40 parti-
cipants and ending with 29. However, we used the pretest
score to measure and control for this effect. We also used a
T-Test to compare the pretest means of those who remained
in the study (23.90) and those who did not (22.18) and found
the difference not to be statistically significant at the 0.05
level of alpha.

Maturation bias is the result of participants learning at
unequal rates within groups during the experiment. Due to
the nature of the experiment, our results may include effects
of a maturation bias. As a normal part of the inspection
process, we gave participants in both the Inspection and
Inspection+TDD groups an opportunity to correct defects
identified in their code approximately two weeks after
submitting the original code, but participants in the control
and TDD groups did not have this opportunity. All
participants were enrolled in an object-oriented program-
ming and design course during the experiment and may
have gained knowledge during any two-week period of the
course that would have made them better programmers
and less likely to produce defects. Only the participants
whose code was inspected as part of the development
method had an opportunity to use any knowledge gained to
improve their code, and since this potential maturation
effect was not measured, we are unable to eliminate or
quantify the possible effects of a maturation bias.

Order bias is an effect resulting from the order in which
treatments are applied to participants. This study is vulner-
able to an order bias resulting from the order in which
inspections were performed and whether inspections were
the first or second inspection on the day of inspection. We
controlled for order bias in two ways. First, we performed the
measurement inspections in random order within blocks of
four, and we performed the method inspections (which
involved only two groups) on code from one randomly
selected participant from each group each day, alternating
each day on which group’s inspection was performed first.
Second, we used inspection day and whether the inspection
was performed first or second on the day of inspection as
control variables during data analysis.

Implementation bias is an effect resulting from varia-
bility in the way a treatment condition is implemented or
applied. Failure to write unit tests before program code may
result in an implementation bias in the application of TDD.
We do not have an objective measure to indicate whether
the unit tests submitted by participants in this study were
written before the program code, so we are unable to
eliminate the possibility of an implementation bias affecting
our results. However, we used the Eclipse Plug-in of the
Clover3 test coverage tool to provide an objective measure
of the effectiveness of the submitted tests. Code coverage
results showed an average of 82.58 percent coverage
(including both statement and branch coverage) with a
standard deviation of 8.92. We also conducted a postexperi-
ment survey in which participants were asked to rate their
effectiveness in implementing TDD on a 5-point Likert

554 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

3. http://www.atlassian.com/software/clover/.

scale, with 5 being high and 1 being low. To encourage

honest answers, we gave the survey when the classroom

instructor was not present, and told the students that their

instructor would not see the surveys. The mean response to

this survey item was 3.63. Of the 16 students in one of the

two research groups who performed TDD, two rated their

effectiveness in implementing TDD as a 5, nine rated it as a

4, two rated it as a 3, and three rated it as a 2.

4.5 Threats to External Validity

We have identified the following four threats to external

validity that limit our ability to generalize results to the

software development community:

1. The participants in the study were undergraduate
students rather than professional programmers, and
therefore did not have the same level of programming
knowledge or experience as the average professional
programmer. We attempted to minimize this effect by
choosing participants from a class consisting mostly
of juniors and seniors, and by including only the
students with the highest pretest scores in the study.
However, the participants still were not representa-
tive of the general population of programmers, and
most likely represent novice programmers. This
would have affected all of the research groups, but
since the TDD method was most dependent on the
ability of the programmers, it most likely biased the
study in favor of code inspection.

2. Although they were not participants in the study,
the inspectors were college students and did not
have professional code inspection experience. Prior
research has shown a positive correlation between
inspector experience and the number of defects
found [9], [10], [44]. However, our result—that
inspection is more effective than TDD—is robust to
this potential bias, which would have had the effect
of reducing the likelihood of finding inspection to be
more effective.

3. The nature of the experiment required changes to
the code inspection process from what would
normally be done in industry. First, authors were
not invited to participate in the inspections, as
described in Section 4.2.1, and second, we did not
use an iterative cycle of Rework, Follow-Up, and
Reinspection as described in Section 4.3.1 to ensure
that all identified defects were corrected. Not
inviting authors to participate would have resulted
in understating the effectiveness of code inspection.
Section 4.3.1 discusses the potential effect of not
including an iterative cycle of Rework, Follow-Up,
and Reinspection.

4. The inspectors performed multiple inspections in a
short period of time, of code that performs the same
function and is written to the same specification. This
was a necessary part of the experiment, but would
rarely, if ever, occur in practice. This could have
resulted in the inspectors finding more defects in
later inspections as they became more familiar with
the specifications and with Java-based XML proces-
sing code. However, if this affected the results, we

should have detected an order bias during data
analysis. Use of inspection order as a control variable
did not indicate an order bias in the results.

5 RESULTS

This study included two dependent variables: the total
number of major defects (Total_Majors) and the total
number of hours spent applying the method (Total_
Method_Hours). We used Bartlett’s test of sphericity to
determine whether the dependent variables were suffi-
ciently correlated to justify use of a single MANOVA,
instead of multiple ANOVAs, for hypothesis testing. A
p-value less than 0.001 indicates correlation sufficiently
strong to justify use of a single MANOVA [45]. Bartlett’s
test yielded a p-value of 0.602, indicating that a MANOVA
was not justified, so we proceeded with a separate ANOVA
for each dependent variable.

5.1 Tests of Statistical Assumptions

Tests of normality (including visual inspection of a
histogram and z-testing for skewness and kurtosis as
described below) indicated that Total_Method_Hours was
not normally distributed, and Levene’s test indicated
Total_Method_Hours did not meet the homogeneity of
variance assumption. These assumption violations were
corrected by performing a square-root transformation.
Throughout the remainder of this document, Total_
Method_Hours refers to the transformed variable unless
otherwise noted. Although hypothesis testing results are
only presented for the transformed variable, the original
variable produced the same hypothesis testing results. After
performing the transformation, we used (3) and (4), as
recommended by Hair et al. [46], to obtain Z values for
testing the normality assumptions both within and across
groups for both dependent variables, and found them to be
normally distributed at the 0.05 level of alpha:

Zskewness ¼
skewnessffiffiffi

6
N

q ; ð3Þ

Zkurtosis ¼
kurtosisffiffiffiffi

24
N

q : ð4Þ

5.2 Defects Remaining

The Inspection+TDD and Inspection groups had the lowest
mean number of defects remaining as shown in Table 4,
whereas the TDD group had the highest.

Although the means reported in Table 4 provide useful
insight into the relative effectiveness of each method on
reducing defects, the numbers are biased as a result of both
an unequal number of observations in the research groups,
and the differing effects of programmer ability and
inspection order on the groups. Searle et al. [47] introduced
the concept of an “Estimated Marginal Mean” to correct for
these biases by calculating a weighted average mean to
account for different numbers of observations in the groups
and by using the ANOVA model to adjust for the effect of
covariates. The covariate adjustment is performed by
inserting the average values of the covariates into the

WILKERSON ET AL.: COMPARING THE DEFECT REDUCTION BENEFITS OF CODE INSPECTION AND TEST-DRIVEN DEVELOPMENT 555

model, thereby calculating a predicted value for the mean
that would be expected if the covariates were equal at their
mean values.

We used the pretest score as a covariate for programmer
ability. We used two variables—inspection day order, and
an indication of whether the inspection was performed first
or second on the day of inspection—as covariates for
inspection order. Table 5 shows the estimated marginal
means of the number of defects remaining, in order from
smallest to largest. The “Adjusted Estimated Marginal
Mean” column includes the adjustment for defects not
fixed after the method inspections. The main difference
between the estimated marginal means and the simple
means of Table 4 is that the estimated marginal mean of the
TDD group is lower than the one for the control group.
However, the ANOVA results described below indicate that
the difference is not statistically significant.

We used ANOVA to test our hypotheses and as with the
calculation for estimated marginal means, we used the
pretest score to control for the effects of programmer ability,
and measurement inspection order and whether the
inspection was performed first or second on the day of
inspection to control for the effects of inspection order. For
hypothesis H1, which hypothesizes that code inspection is

more effective than TDD at reducing software defects, we
obtained different hypothesis testing results depending on
whether we used the adjusted or the unadjusted defect
counts as the dependent variable. The hypothesis is
supported with the adjusted defect count variable, whereas
it is not supported with the unadjusted variable.

For the adjusted defect count variable, we observed eta
squared values of 0.190 for the effect of code inspection and
0.323 for the pretest score, indicating that code inspection
and pretest score accounted for 19.0 and 32.3 percent,
respectively, of the total variance in the number of defects
remaining. Both the pretest score and whether Inspection
was used as a defect reduction method were significant at
the 0.05 level of alpha and both of these variables were
negatively correlated with the number of defects. The use of
TDD did not result in a statistically significant difference in
the number of defects. However, this lack of significance
may be the result of low observed statistical power for the
effect of TDD, which was only 0.238. Table 6 summarizes
the results of the ANOVA analysis on the adjusted defect
count variable, with variables listed in order of significance.

For the unadjusted defect count variable, only the pretest
score was found to be statistically significant, with a p-value
of 0.003. The effects of inspection, TDD, and the interaction
between inspection and TDD resulted in the following
respective p-values: 0.119, 0.153, and 0.358. Therefore, based
on the unadjusted defect counts, we would reject hypoth-
eses H1 and H2.

To test hypothesis H2 (that the combined use of the two
methods is more effective than either method alone) for
the adjusted defect count variable, we performed one-
tailed T-Tests with a Bonferroni adjustment for multiple

556 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

TABLE 5
Estimated Marginal Means of Defects Remaining

by Group

TABLE 4
Descriptive Statistics of Defects Remaining by Group

(a) Adjusted for defects not fixed after method inspection, (b) Not
adjusted for defects not fixed after method inspection.

TABLE 6
ANOVA Summary for Adjusted Number of Defects Remaining

comparisons to compare the following two sets of means:
1) TDD versus Inspection+TDD and 2) Inspection versus
Inspection+TDD. After the Bonferroni adjustment, a
p-value of 0.025 was needed for both comparisons to
support the hypothesis at the 0.05 level. The comparisons
yielded p-values of 0.036 and 0.314, respectively, so we
reject hypothesis H2.

A supplemental document, which can be found online,
contains additional analysis of the number of defects
remaining. This supplemental analysis includes descriptive
statistics and ANOVA analysis of the number of defects
found separately by the automated tests and by the
measurement code inspection. The main result of the
supplemental analysis is that hypothesis H1 is supported
and H2 is not supported when using only automated
testing to count defects. Neither hypothesis is supported
when using only code inspection.

5.3 Implementation Cost

We performed an analysis of the implementation costs
associated with TDD and code inspection but we did not
explore the cost benefits of reducing software defects. Refer
to Boehm [37] or Gilb and Graham [10] for in-depth
treatment of cost savings associated with defect reduction.
We measured cost in man-hours and found TDD to have
the lowest mean cost and Inspection+TDD to have the
highest, as shown in Table 7.

Fig. 4 presents a profile plot of the estimated marginal
means. The solid line represents the two groups that did not
use TDD, whereas the dashed line represents the two
groups that did use TDD. The position of the points on the
x-axis indicates whether the groups used code inspection.
Following each line from left to right shows the cost effect of

starting either with or without TDD and adding code
inspection to the method used. Two important observations
from the profile plot are that the use of TDD resulted in a
cost savings, and that there is an interaction effect between
the methods, as indicated by the fact that the lines cross.
The interaction effect is supported by the ANOVA analysis
at the 0.05 level of alpha as shown in Table 8, whereas the
cost savings for TDD is not supported.

The finding of an interaction effect on cost between code
inspection and TDD appears to be atheoretical. Further
research is necessary to confirm, and if confirmed, to
explain this effect. The lack of a finding of significance for
the potential TDD cost savings is consistent with other TDD
research. In our review of the TDD literature, we have not
found reports of an initial development cost savings
associated with TDD. We did, however, observe a low-
statistical power of 0.107 for this effect, so if a cost savings is
a real effect of TDD, we would not expect to have observed
it in this study.

We used ANOVA to test hypothesis H3 (that imple-
mentation cost differs between the two methods). The
ANOVA results are taken from the square-root transformed
cost variable, although the original variable yielded the
same hypothesis testing results. As with the test for the
number of defects remaining, we used the pretest score as a
control variable. We did not control for inspection order
because the amount of time spent on inspections was held
constant, leaving no opportunity for inspection order to
affect cost. We obtained an eta squared of 0.517 for the effect

WILKERSON ET AL.: COMPARING THE DEFECT REDUCTION BENEFITS OF CODE INSPECTION AND TEST-DRIVEN DEVELOPMENT 557

TABLE 7
Descriptive Statistics of Implementation Cost by Group

TABLE 8
ANOVA Summary for Implementation Cost

Fig. 4. Profile plot of square-root transformed estimated marginal mean
implementation cost.

of code inspection—indicating that whether code inspection
was used accounted for 51.7 percent of the total variance in
implementation cost. The pretest score was not significant
and had an eta squared of only 0.085. As stated above, we
also found the use of TDD not to be significant. Table 8
presents a summary of these results, with variables listed in
order of significance.

Post hoc analysis using Bonferroni’s test indicates that
the TDD group is significantly different from both the
Inspection and Inspection+TDD groups, and that the
control group is significantly different from the Inspec-
tion+TDD group—all at the 0.05 level of alpha. Table 9
summarizes these results, with comparisons listed in order
of significance.

These results show that hypothesis H3 is supported,
indicating that there is a cost difference between the use of
code inspection and TDD, with the cost of code inspection
being higher. Table 10 presents a summary of hypothesis
testing results.

6 DISCUSSION

The main result of this study is to provide support for the
hypothesis that code inspection is more effective than TDD at
reducing software defects, but that it is also more expensive.
Resource constraints prevented us from implementing an
iterative reinspection process, which resulted in some
conflicting results in our finding that code inspection is
more effective than TDD. As explained in Section 4.3.1, we
presented two sets of results—one on a defect count variable
that included an adjustment for uncorrected defects that
should have been caught by an iterative reinspection process
and one on a defect count variable that did not include the
adjustment. Results from the adjusted defect count variable
support the hypothesis that code inspection is more effective,
whereas results from the unadjusted variable do not.

We believe that the adjusted defect count variable is
more representative of what would be experienced in an
industrial setting for two reasons. First, the programmers
were students who, although motivated to do well on the
programming assignment for a course grade, likely had a
lower motivation to produce high-quality software than a
professional programmer would have. We believe that few
professional programmers would ignore defects found by

inspection as some of our participants did, so the number of
uncorrected defects would be lower than what we
observed. Second, although it is impossible to be certain
about which uncorrected defects would have been caught
by an iterative reinspection process, we believe that most (if
not all) of them would have been caught by an experienced
inspection team with an experienced inspection moderator
since verification of defect correction is the purpose of the
reinspection step and software inspection has been found to
be effective at reducing defects in numerous previously
cited studies.

The supplemental analysis (which is available online)
provides additional support for the hypothesis that code
inspection is more effective than TDD at reducing defects.
Here, we performed hypothesis testing on the defect counts
obtained only by using the 58 JUnit tests described in
Section 4.3.1 and found support for the hypothesis at the
0.01 level of alpha for the defect counts adjusted for
uncorrected defects, and at the 0.1 level for the unadjusted
defect counts.

This result is important because automated tests are less
subjective than inspection-based defect counts. We per-
formed the analysis in the main part of the study on the
defect counts obtained from a combination of inspection
and automated testing to be consistent with prior code
inspection research and to avoid a potential bias in favor of
TDD because of the relationship between TDD and
automated testing. Therefore, the finding of code inspec-
tion being more effective when using only automated
acceptance testing—in spite of this potential bias—provides
strong support for the hypothesis. This support, however,
is tempered by the fact that we did not find support for the
hypothesis when using only the measurement inspections
to count defects.

Another implication of this research is the finding that
TDD did not significantly reduce the number of defects.
Several possible explanations for this result exist. Low
observed statistical power is one explanation. Another
explanation, and the one that we believe accounts for the
varying results summarized in Section 2.2 on the effec-
tiveness of TDD as a defect reduction method, is that
TDD is currently too loosely defined to produce reliable
results that can confidently be compared with other

558 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

TABLE 9
Post Hoc Analysis for Implementation Cost by Group

TABLE 10
Summary of Hypothesis Testing Results

methods. A common definition of TDD is that it is a
practice in which no program code is written until an
automated unit test requires the code in order to succeed
[38]. However, much variability is possible within this
definition, and we believe it is this variability that
accounts for the mixed results in the effectiveness of
TDD as a defect reduction method. Additional research is
necessary to add structure to TDD and to allow it to be
reliably improved and compared to other methods.

7 SUMMARY AND CONCLUSIONS

We compared the software defect rates and implementation
costs associated with two methods of software defect
reduction: code inspection and test-driven development.
Prior research has indicated that both methods are effective
at reducing defects, but the methods had not previously
been compared.

We found that code inspection is more effective than
TDD at reducing defects, but that code inspection is also
more expensive to implement. We also found some
evidence to indicate that TDD may result in an implemen-
tation cost savings, although somewhat conflicting results
require additional research to verify this result. Previous
research has not shown a cost savings from TDD. The
results did not show a statistically significant reduction in
defects associated with the use of TDD, but results did show
an interaction effect on cost between code inspection and
TDD. We are currently unable to explain this effect. See
Table 10 for a summary of hypothesis testing results.

These findings have the potential to significantly impact
software development practice for both software devel-
opers and managers, but additional research is needed to
validate these findings both inside and outside of a
laboratory environment. Additional research is also needed
to more clearly define TDD and to compare a more clearly
defined version of TDD with code inspection.

ACKNOWLEDGMENTS

The authors are grateful to Cenqua Pty. Ltd. for use of their
Clover code coverage tool. They also thank the study
participants and the inspectors for their time and effort, and
Dr. Adam Porter for the use of materials from his software
inspection experiments.

REFERENCES

[1] G. Tassey, “The Economic Impact of Inadequate Infrastructure for
Software Testing,” technical report, Nat’l Inst. of Standards and
Technology, 2002.

[2] B. George and L. Williams, “A Structured Experiment of Test-
Driven Development,” Information and Software Technology, vol. 46,
no. 5, pp. 337-342, 2004.

[3] E.M. Maximilien and L. Williams, “Assessing Test-Driven Devel-
opment at IBM,” Proc. 25th Int’l Conf. Software Eng., pp. 564-9,
2003.

[4] D.L. Parnas and M. Lawford, “The Role of Inspections in Software
Quality Assurance,” IEEE Trans. Software Eng., vol. 29, no. 8,
pp. 674-676, Aug. 2003.

[5] F. Shull, V.R. Basili, B.W. Boehm, A.W. Brown, P. Costa, M.
Lindvall, D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz, “What
We Have Learned about Fighting Defects,” Proc. Eighth IEEE
Symp. Software Metrics, pp. 249-58, 2002.

[6] M.E. Fagan, “Design and Code Inspections to Reduce Errors in
Program Development,” IBM Systems J., vol. 15, no. 3, pp. 182-211,
1976.

[7] N. Nagappan, M.E. Maximilien, T. Bhat, and L. Williams,
“Realizing Quality Improvement through Test Driven Develop-
ment: Results and Experiences of Four Industrial Teams,”
Empirical Software Eng., vol. 13, no. 3, pp. 289-302, 2008.

[8] P. Runeson, C. Andersson, T. Thelin, A. Andrews, and T. Berling,
“What Do We Know about Defect Detection Methods?” IEEE
Software, vol. 23, no. 3, pp. 82-90, May/June 2006.

[9] M.E. Fagan, “Advances in Software Inspections,” IEEE Trans.
Software Eng., vol. 12, no. 7, pp. 744-51, July 1986.

[10] T. Gilb and D. Graham, Software Inspection. Addison-Wesley,
1993.

[11] O. Laitenberger and J.-M. DeBaud, “An Encompassing Life Cycle
Centric Survey of Software Inspection,” J. Systems and Software,
vol. 50, no. 1, pp. 5-31, 2000.

[12] A. Aurum, H. Petersson, and C. Wohlin, “State-of-the-Art:
Software Inspections after 25 Years,” Software Testing, Verification
and Reliability, vol. 12, no. 3, pp. 133-54, 2002.

[13] A.F. Ackerman, L.S. Buchwald, and F.H. Lewski, “Software
Inspections: An Effective Verification Process,” IEEE Software,
vol. 6, no. 3, pp. 31-36, May 1989.

[14] W.S. Humphrey, A Discipline for Software Eng., ser. the SEI Series
in Software Engineering. Addison-Wesley Publishing Company,
1995.

[15] R.C. Linger, “Cleanroom Software Engineering for Zero-Defect
Software,” Proc. 15th Int’l Conf. Software Eng., pp. 2-13, 1993.

[16] T. Thelin, P. Runeson, and B. Regnell, “Usage-Based Reading—An
Experiment to Guide Reviewers with Use Cases,” Information and
Software Technology, vol. 43, no. 15, pp. 925-38, 2001.

[17] T. Thelin, P. Runeson, and C. Wohlin, “An Experimental
Comparison of Usage-Based and Checklist-Based Reading,” IEEE
Trans. Software Eng., vol. 29, no. 8, pp. 687-704, Aug. 2003.

[18] T. Thelin, P. Runeson, C. Wohlin, T. Olsson, and C. Andersson,
“Evaluation of Usage-Based Reading—Conclusions after Three
Experiments,” Empirical Software Eng., vol. 9, nos. 1/2, pp. 77-110,
2004.

[19] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S.
Sørumgård, and M.V. Zelkowitz, “The Empirical Investigation of
Perspective-Based Reading,” Empirical Software Eng., vol. 1, no. 2,
pp. 133-64, 1996.

[20] C. Denger, M. Ciolkowski, and F. Lanubile, “Investigating the
Active Guidance Factor in Reading Techniques for Defect
Detection,” Proc. Third Int’l Symp. Empirical Software Eng., 2004.

[21] O. Laitenberger and J.-M. DeBaud, “Perspective-Based Reading of
Code Documents at Robert Bosch GmbH,” Information and
Software Technology, vol. 39, no. 11, pp. 781-791, 1997.

[22] J. Miller, M. Wood, and M. Roper, “Further Experiences with
Scenarios and Checklists,” Empirical Software Eng., vol. 3, no. 1,
pp. 37-64, 1998.

[23] V.R. Basili, G. Caldiera, F. Lanubile, and F. Shull, “Studies on
Reading Techniques,” Proc. 21st Ann. Software Eng. Workshop,
pp. 59-65, 1996.

[24] V.R. Basili and R.W. Selby, “Comparing the Effectiveness of
Software Testing Strategies,” IEEE Trans. Software Eng., vol. 13,
no. 12, pp. 1278-1296, Dec. 1987.

[25] A.A. Porter and L.G. Votta, “An Experiment to Assess Different
Defect Detection Methods for Software Requirements Inspec-
tions,” Proc. 16th Int’l Conf. Software Eng., pp. 103-12, 1994.

[26] A.A. Porter, L.G. Votta Jr, and V.R. Basili, “Comparing Detection
Methods for Software Requirements Inspections: A Replicated
Experiment,” IEEE Trans. Software Eng., vol. 21, no. 6, pp. 563-575,
June 1995.

[27] F. Shull, F. Lanubile, and V.R. Basili, “Investigating Reading
Techniques for Object-Oriented Framework Learning,” IEEE
Trans. Software Eng., vol. 26, no. 11, pp. 1101-1118, Nov. 2000.

[28] J.F. Nunamaker Jr, R.O. Briggs, D.D. Mittleman, D.R. Vogel, and
P.A. Balthazard, “Lessons from a Dozen Years of Group Support
Systems Research: A Discussion of Lab and Field Findings,”
J. Management Information Systems, vol. 13, no. 3, pp. 163-207, 1997.

[29] J.F. Nunamaker Jr, A.R. Dennis, J.S. Valacich, D.R. Vogel, and J.F.
George, “Electronic Meeting Systems to Support Group Work,”
Comm. ACM, vol. 34, no. 7, pp. 40-61, 1991.

[30] P.M. Johnson, “An Instrumented Approach to Improving Soft-
ware Quality through Formal Technical Review,” Proc. 16th Int’l
Conf. Software Eng., pp. 113-22, 1994.

WILKERSON ET AL.: COMPARING THE DEFECT REDUCTION BENEFITS OF CODE INSPECTION AND TEST-DRIVEN DEVELOPMENT 559

[31] M. van Genuchten, C. van Dijk, H. Scholten, and D. Vogel, “Using
Group Support Systems for Software Inspections,” IEEE Software,
vol. 18, no. 3, pp. 60-65, May/June 2001.

[32] S. Biffli, P. Grünbacher, and M. Halling, “A Family of Experiments
to Investigate the Effects of Groupware for Software Inspection,”
Automated Software Eng., vol. 13, no. 3, pp. 373-394, 2006.

[33] F. Lanubile, T. Mallardo, and F. Calefato, “Tool Support for
Geographically Dispersed Inspection Teams,” Software Process:
Improvement and Practice, vol. 8, no. 4, pp. 217-231, 2003.

[34] C.K. Tyran and J.F. George, “Improving Software Inspections with
Group Process Support,” Comm. ACM, vol. 45, no. 9, pp. 87-92,
2002.

[35] M. van Genuchten, W. Cornelissen, and C. van Dijk, “Supporting
Inspections with an Electronic Meeting System,” J. Management
Information Systems, vol. 14, no. 3, pp. 165-78, 1997.

[36] P. Vitharana and K. Ramamurthy, “Computer-Mediated Group
Support, Anonymity, and the Software Inspection Process: An
Empirical Investigation,” IEEE Trans. Software Eng., vol. 29, no. 2,
pp. 167-80, Feb. 2003.

[37] B.W. Boehm, Software Eng. Economics, Prentice Hall, 1981.
[38] K. Beck, Test Driven Development: By Example. Addison-Wesley

Professional, 2002.
[39] M.M. Müller and O. Hagner, “Experiment about Test-First

Programming,” IEE Proc. Software, vol. 149, no. 5, pp. 131-136,
Oct. 2002.

[40] H. Erdogmus, M. Morisio, and M. Torchiano, “On the Effective-
ness of the Test-First Approach to Programming,” IEEE Trans.
Software Eng., vol. 31, no. 3, pp. 226-37, Mar. 2005.

[41] W.S. Humphrey, Managing the Software Process, ser. The SEI Series
in Software Engineering. Addison-Wesley Publishing Company,
1989.

[42] T.L. Rodgers, D.L. Dean, and J.F. Nunamaker Jr, “Increasing
Inspection Efficiency through Group Support Systems,” Proc. 37th
Ann. Hawaii Int’l Conf. System Sciences, 2004.

[43] C. Fox, “Java Inspection Checklist,” 1999.
[44] R.G. Ebenau and S.H. Strauss, Software Inspection Process, ser.

Systems Design and Implementation. McGraw Hill, 1994.
[45] L.S. Meyers, G. Gamst, and A.J. Guarino, Applied Multivariate

Research: Design and Interpretation. Sage Publications, Inc., 2006.
[46] J.F. Hair, B. Black, B. Babin, R.E. Anderson, and R.L. Tatham,

Multivariate Data Analysis, sixth ed. Prentice Hall, 2005.
[47] S.R. Searle, F.M. Speed, and G.A. Milliken, “Population Marginal

Means in the Linear Model: An Alternative to Least Squares
Means,” The Am. Statistician, vol. 34, no. 4, pp. 216-221, 1980.

Jerod W. Wilkerson received the BS and MS
degrees in accounting from Brigham Young
University and the PhD degree in management
information systems from the University of
Arizona. Prior to receiving the PhD degree and
joining the faculty at Pennsyvania State Uni-
versity, Erie, he spent several years in industry
working as a software developer, a project and
business manager, and a consultant. He
founded and served as President of The Object

Center—a consulting and training company focused on object technol-
ogy and web development. His consulting and training clients have
included the US Department of Defense, several state and local
government agencies in Utah and Texas, and more than 20 business
organizations—including Lockheed Martin, Raytheon Missile Systems,
GMAC, J.P. Morgan Chase, and Iomega.

Jay F. Nunamaker Jr. received the BS and MS
degrees in engineering from the University of
Pittsburgh, the BS degree from Carnegie Mellon
University and the PhD degree in operations
research and systems engineering from Case
Institute of Technology. He is the Regents and
Soldwedel Professor of MIS, Computer Science,
and Communication at the University of Arizona.
He is a director of the Center for the Manage-
ment of Information and the National Center for

Border Security and Immigration at the University of Arizona. In a 2005
journal article in Communications of the Association for Information
Systems, he was ranked as the fourth to the sixth most productive
researcher for the period from 1991-2003. He was inducted into the
Design Science Hall of Fame in May 2008. He received the LEO Award
from the Association of Information Systems (AIS) at ICIS in Barcelona,
Spain, in December 2002. This award is given for a lifetime of
exceptional achievement in information systems. He was elected a
fellow of the AIS in 2000. He was featured in the July 1997 Forbes
Magazine issue on technology as one of eight key innovators in
information technology. He received the professional engineer’s license
in 1965. He founded the MIS department at the University of Arizona in
1974 and served as its department head for 18 years.

Rick Mercer received the MS degree in com-
puter science from the University of Idaho. He is
currently a senior lecturer in the Department of
Computer Science at the University of Arizona.
He has served as an educator symposium chair
for XP/Agile Universe 2004, OOPSLA 2006, and
as cochair for ChiliPLoP 2005 through 2011. He
is the author of six published textbooks targeted
for the first year of the computer science degree
and two free textbooks that integrate test-driven

development into CS1 and CS2.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

560 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

